
Membranes 2017, 7, 47 7 of 23

Table 1. Classification of commercially available first generation surgical meshes [38].

Product
(Manufacturer) Material Pore Size

(mm) Absorbable Weight
(g/m2) Filament Mechanical Properties Advantages and Disadvantages

Vicryl (Ethicon) Polyglactin 0.4 Yes, fully
(60–90 days) 56 Multifilament

Tensile strength of 78.2 ± 10.5 N/cm
in longitudinal direction and

45.5 ± 13.5 N/cm in
transverse direction.

Eliminates the risk of infectious disease transmission.
Usually results in hernia recurrence after
complete absorption

Dexon (Syneture) Polyglycolic
acid 0.75 Yes, fully

(60–90 days) 56 Multifilament N.A.

Adhesions fade as the mesh is absorbed. It is
controversial whether the fibrous ingrowth into the
prosthesis is sufficient to accomplish a
permanent repair.

Sefil (B-Baun) Polyglycolic
acid 0.75 Yes, fully

(60–90 days) 56 Multifilament N.A.
High anatomic adaptability and low risk of late
secondary infection. Retain 50% of its strength for
20 days.

Marlex (BARD) PP 0.8 No 80–100 Monofilament Tensile strength of 58.8 N/cm High tensile strength. Evokes a chronic inflammatory
reaction.

3D Max (BARD) PP 0.8 No 80–100 Monofilament Tensile strength of 124.7 N/cm Anatomically designed. Reduced patient pain.
Adhesions risk.

Polysoft (BARD) PP 0.8 No 80–100 Multifilament Burst strength of 558 N and a
stiffness of 52.9 N/cm

Low infection risk. Not used in extraperitoneal spaces
as produce dense adhesions *.

Prolene (Ethicon) PP 0.8 No 80–100 Monofilament Tensile strength of 156.5 N/cm Facilitates fibrovascular ingrowth, infection resistance
and improve compliance. Adhesions risk.

Surgipro
(Autosuture) PP 0.8 No 80–100 Multifilament

Tensile strength of 41.8 N/cm in
longitudinal direction and 52.9 N/cm

in transverse direction

High tensile strength, ease of handling and position and
retains properties in vivo. Difficult complete wound
healing caused by mesh structure.

Prolite (Atrium) PP 0.8 No 80–100 Monofilament Tensile strength of 138 N/cm

Monofilaments aligned in parallel spaced angles to
maximizing material flexibility in two dimensions and a
smooth and very uniform open architecture.
Adhesions risk.

Trelex (Meadox) PP 0.8 No 80–100 Multifilament N.A. *

Atrium (Atrium) PP 0.8 No 80–100 Monofilament Tensile strength of 56.2 N/cm High tolerance to infection. Adhesions risk.
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Table 1. Cont.

Product
(Manufacturer) Material Pore Size

(mm) Absorbable Weight
(g/m2) Filament Mechanical Properties Advantages and Disadvantages

Premilene
(B-Braun) PP 0.8 No 80–100 Monofilament

Tensile strength of 41.4 N/cm in
longitudinal direction and 36.5 N/cm

in transverse direction

Mesh adaptation to the longitudinal and latitudinal
axes of the connective tissue where is used for the
reinforcement, rapid healing and tissue penetration.
Adhesions risk.

Serapren (smooth) PP 0.8 No 80–100 Multifilament N.A. *

Parietene
(Covidien) PP 0.8 No 80–100 Multifilament

Tensile strength of 38.9 ± 5.2 N/cm
in longitudinal direction and

26.6 ± 4.2 N/cm in
transverse direction

*

Prolene Light
(Covidien) PP 1.0–3.6 No 36–48 Monofilament Tensile strength of 20 N/cm Greater flexibility. Not used in intraperitoneal spaces as

produce dense adhesions.

Optilene (B-Baun) PP 1.0–3.6 No 36–48 Monofilament Tensile strength of 58 N/cm
Soft, thin and pliable. Ideal for inguinal hernia repair to
reduce chronic pain. Not used in extraperitoneal spaces
as produce dense adhesions.

Mersilene
(Ethicon) POL 1.0–2.0 No 40 Multifilament Tensile strength of 19 N/cm

Low infection risk. Evokes an aggressive macrophage
and giant cell rich inflammatory reaction, followed by a
dense fibrous ingrowth.

Goretex (Gore) e-PTFE 0.003 No Heavyweight Multifilament Minimum tensile strength of 16
N/cm

Smooth and strong. Evokes a chronic
inflammatory reaction.

PP: Polypropylene. POL: Polyester. e-PTFE: Expanded polytetrafluoroethylene. N.A, Information not available in literature. * Duplicated properties.
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Table 2. Classification of commercially available second generation surgical meshes [38].

Product
(Manufacturer) Material Pore Size

(mm) Absorbable Weight
(g/m2) Filament Mechanical Properties Advantages and Disadvantages

Vypro, Vypro II
(Ethicon)

PP/polyglactin
910 >3 Partially

(42 days) 25 & 30 Multifilament Tensile strength of 16 N/cm Significantly decreased rates of chronic pain. Higher
rate of hernia recurrence.

Gore-Tex Dual Mesh
Dual Mesh Plus (Gore) e-PTFE 0.003–0.022 No Heavyweight Multifilament

Minimum tensile strength of
16 N/cm (Gore-Tex Dual Mesh) and

157.7 N/cm (Dual Mesh Plus)

Promotes host tissue growth and reduces tissue
attachment. Infection risk.

Parietex (Covidien) POL/collagen >3 Partially
(20 days) 75 Multifilament Elasticity of 3.5 at 16 N Short-term benefit for anti-adhesion property. Greater

infection rate (57%).

Composix EX Dulex
(BARD) PP/e-PTFE 0.8 No Lightweight Monofilament N.A. Minimizes adhesions and provides optimal tissue

ingrowth. Infection risk.

Proceed (Ethicon) PP/cellulose Large Partially
(<30 days) 45 Monofilament Tensile strength of 56.6 N/cm Low rates of hernia recurrence (3.7%). Risk of formation

of visceral adhesions.

DynaMesh IPOM
(FEG Textiltechnik) PP/PVDF 1–2 Partially 60 Monofilament

Tensile strength of 11.1 ± 6.4 N/cm
in longitudinal direction and

46.9 ± 9.7 N/cm in
transverse direction

Minimal foreign body reaction. Adhesions risk.

Sepramesh (Genzyme) PP/sodium 1–2 Partially
(<30 days) 102 Monofilament N.A.

Reduces adhesions and the optimal tissue ingrowth is
promoted. Sticky consistency difficult the
surgeon manipulation.

Ultrapro (Ethicon) PP/PGC-25 >3 Partially
(<140 days) 28 Monofilament Tensile strength of 55 N/cm Reduced inflammatory response. Adhesions risk.

Ti-Mesh (GfE) PP/titanium >1 No 16 & 35 Monofilament
Tensile strength of 12 N/cm (mesh of

16 g/m2) and 47 N/cm
(mesh of 35 g/m2)

Reduced inflammatory response. Low tensile strength.

C-Qur (Atrium) PP/omega 3 >1 Partially
(120 days) 50 Monofilament Ball burst strength of 170 ± 20.1 N

Short-term benefit for anti-adhesion property. No
significant difference for adhesion grade or amount
relative to other meshes.

PP: Polypropylene. e-PTFE: Expanded polytetrafluoroethylene. POL: Polyester. PVDF: Polyvinylidene fluoride. PGC-25: poliglecaprone 25. N.A, Information not available in literature.

second generation
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Table 3. Classification of commercially available third generation surgical meshes [38].

Product
(Manufacturer) Material Tensile Strength

(MPa) Advantages Disadvantages

Surgisis (Cook) Porcine (small intestine
submucosa) 4 No refrigeration is required.

Long history of safety data.

Requires hydration.
Susceptible to
collagenases.

FlexHD (J&J) Human (acellular dermis) 10 No refrigeration or
rehydration is required. N.A.

AlloMax (Davol) Human (acellular dermis) 23
No refrigeration or

rehydration is required.
Available in large sizes.

Hydration
required.

CollaMend (Davol) Porcine/Bovine (xenogenic
acellular dermis) 11

No refrigeration or
rehydration is required.
Available in large sizes.

N.A.

Strattice (LifeCell) Porcine/Bovine (xenogenic
acellular dermis) 18 Available in large sheets. Limited long-term

follow up.

Permacol
(Covidien)

Porcine/Bovine (xenogenic
acellular dermis) 39

No refrigeration or
rehydration is required.
Available in large sizes.

N.A.

XenMatrix (Davol) Porcine/Bovine (xenogenic
acellular dermis) 14 Available in large sheets. Limited long-term

follow up.

N.A. Information not available in literature.

3.7. Manufacturing Processes for Surgical Meshes

Surgical meshes are produced from different synthetic materials and in different mesh structures,
the knitted structure being the most common [44]. Surgical filaments are mainly manufactured by
extrusion processes and then knitted accordingly. As mentioned, meshes are typically manufactured
from PL, PP, PTFE, e-PTFE, PVDF and composite materials (e-PTFE/PP) [45]. The knitting pattern can
be significantly altered resulting in a broad range of properties. Thickness, pore size, tensile strength,
flexural rigidity, and surface texture are highly dependent upon the knitting pattern; the resultant
interplay among these characteristics imparts different performance [44]. These characteristics, besides
altering the biocompatibility of the mesh given its affinity to cells, also dictate the mechanical properties
of the mesh such as rigidity and deformation. Knitted meshes are a subset of the non-woven mesh
configuration. However, there is much more order and consistency with pore size using a knitted
design [46]. Knitting, by definition, is the construction of a fabric or cloth from the interlocking of
threads through the formation of loops. Recent studies have been focused on treating the surgical
mesh as a high-tech textile rather than as a prosthesis [44].

3.7.1. The Extrusion Process

Melt extrusion is the least expensive and simplest form of fiber extrusion [47]. This process
consists of melting the polymer pellets through a combination of applied heat and friction. The molten
polymer is then forced under high pressure through a small orifice or a “shower head” spinneret.
The molten polymer flows out of the spinneret and freezes into a solid fiber, which is then typically
reheated and drawn numerous times to further align the molecules and hence strengthen the fiber [48].

Most of the surgical meshes are made from filaments initially developed to be used for surgical
sutures. Surgical sutures are made from polymers like PP [49], PL [50], e-PTFE [51] or PVDF [52]
monofilaments and have been successfully used by the medical profession for decades. Filaments used
for surgical sutures have to possess several characteristics such as [53]:

1. Ability to attach to needles by the usual procedure.
2. Capability to be sterilized using ethylene oxide or ultraviolet radiation.
3. Ability to pass easily through tissue.
4. Ability to resist breakdown without developing an infection.
5. Possess minimal reaction with tissue.
6. Maintain its in vivo tensile strength over extended periods.

third generation
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The most commonly used systems in the knitting manufacturing process are the Tricot [60]
and Raschel knitting machines [61], which are used to create warp or weft knitting structures [62].
Warp knitted meshes are the most popular system used to repair hernia defects, and are manufactured
using the Raschel machine with a basic configuration consisting of two bars where latch-type needles
are collectively mounted (running the full knitting width of the machine) and guide bars to hold yarn
beams individually. The needle bars follow up and down movements, while the guide bars move back
and forth across the needles of each bar to form continuous loops. The warp knit fabric design and
lapping sequence is controlled by the shagging or traverse motion of the guide bars [63].

In principle, the Tricot knitting machine is very similar to the Raschel knitting; the only difference
is the use of spring beard or compound needles instead of the latch needles used in the Raschel knitting
machine. In addition, Tricot sinkers not only performed the function of holding down the loops
whilst the needles rise as Raschel sinkers, but also support the fabric loops. The small angle of fabric
take-away and the type of knitting action in Tricots creates a gentle and lower tension on the knitted
fabric, ideal for high-speed production of fine gauge [64].

A double Raschel warp knitting machine (DR 16 EEC/EAC) has 16 guide bars and enables the
production of textiles with different yarn materials and counts. The machine is equipped with two
different gauges, E18 and E30. This system allows the design of a mesh configuration that could be
adjusted to match given design parameters such as size, shape, Young modulus, and porosity [65].
The ultimate mechanical properties of the meshes are determined by the intrinsic properties of the
filaments and the final configuration of the knitted fabrics.

4. Future Perspectives

Despite the clinical success and vast body of knowledge that has been gained regarding
manufacturing of surgical meshes, material properties, and surgical procedures, it is obvious that the
ideal mesh has not been developed. It is well known that meshes still suffer from contraction and/or
infection after implantation [66]. Furthermore, adhesions between the visceral side of the mesh and
adjacent organs still occur. These complications may have serious consequences, such as chronic pain,
intestinal obstruction, bowel erosion, or hernia recurrence. All of these problems have opened a great
number of opportunities to create a new generation of surgical meshes [67]. This new generation
will have to show a better integration with the tissue of the abdominal wall, but no adhesions on the
visceral side. Based on the ideas of van’t Riet [68], Ebersole [69] and Xu [70], new alternatives rely
broadly on surface mesh modification by novel coatings to existent meshes and/or integration of
nanofiber based systems.

4.1. Coatings

A variety of biocompatible and biodegradable natural and synthetic polymers are being
investigated. Extensive research focuses in the development of a bi-layer composite hernia mesh
in order to minimize the risk of infections and reduce adhesions on the visceral side [71,72].
Materials that had been studied are: Polylactic acid (PLLA) [20], oxygenated regenerated cellulose
(ORC) [67], n-vinyl pyrrolydone (NVP) and n-butylmethacrylate (BMA) [67], polyglycolic acid
(PGA) [73], carboxymethylcellulose (SCMC) [74], omega-3 fatty acid [75], messenchymal stem cells
(RMSC) [76], human dermal (HDF) and rat kidney fibroblasts (RKF) [76], collagen [77–79], chitosan [80],
nanocrystalline silver particles (NCSP) [81] and titanium [82,83]. Table 5 shows some of the properties
that have made these materials attractive as active ingredients in surgical meshes [71,80,84–86].

Most of the recently published literature still presents PP surgical meshes as the “gold standard”
though with surface modifications made with materials mentioned in Table 5. Studies have primarily
concentrated on: thickness and concentration of the materials used in the coating to be in contact with
the visceral and/or abdominal side (Ex: 95% of oxidized collagen and 5% of chitosan) [26] and surface
density (measured in g/m2). The following Table 6 presents a summary of the obtained results based
on the inflammatory response and percentage of adhesion.
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Table 5. Material properties of surgical mesh coatings.

PLLA/PGA ORC/SCMC NVP/BMA Omega-3 Fatty
Acid RMSC/HDF/RKF Collagen/Chitosan NCSP Titanium

Variable
degradation rate

Reduce mesh
adhesions

Reduce mesh
adhesions

Minimal risk of
mesh contraction

Affinity towards
fibroblasts Weak tensile properties Anti-inflammatory Provides mechanical

integrity

Hydrophilicity Absorbable Hydrophilicity Absorbable Favourable cell
adhesion

Negligible effect on
biomechanical properties Antimicrobial Non-absorbable

PLLA: Polylactic acid. PGA: Polyglycolic acid. ORC: Oxygenated regenerated cellulose. SCMC: Carboxymethylcellulose. NVP: N-vinyl pyrrolydone. BMA: N-butylmethacrylate. RMSC:
Messenchymal stem cells. HDF: Human dermal. RKF: Rat kidney fibroblasts. NCSP: Nanocrystalline silver particles.
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Table 6. Examples of surgical mesh coating parameters.

Reference
Analyzed Parameter

Material Surface Density

Pascual et al. [86] Oxidized collagen Chitosan Oxidized collagen 95%/ Chitosan 5%

Ciechańska et al. [71] MBC 6.7 g/m2 (one side)
5.31 g/m2 (two sides)

Cohen et al. [81] NCSP
310 g/m2

640 g/m2

1130 g/m2

Niekraszewics et al. [85] Chitosan 20 g/m2 (one side)
20 g/m2 (two sides)

MBC: Modified bacterial cellulose. NCSP: Nanocrystalline silver particles.

In general, the new composite meshes show highly improved performance regarding peritoneal
regeneration and visceral adhesion [84]. These studies have developed composite surgical meshes
with high potential for adoption. Further studies with a focus on long-term adhesion and structural
performance will complement obtained results.

4.2. Nanofibers

Nanofiber systems made from a large variety of materials have been explored extensively in
the last decade. Scaffolds for tissue regeneration are strongly deemed as a potential application of
these systems [87]. Mimicking the extracellular matrix (ECM) is vital to control cell behavior, such as
adhesion, proliferation, migration, and differentiation. Tissue Engineering (TE) has been extensively
explored to provide answers associated with current problems encountered in the interaction of the
surgical meshes with the human body. One of the challenges of TE is to mimic the natural extracellular
matrix (ECM) of the abdominal wall to promote an efficient integration. Researchers are actively
exploring the implementation of nanofiber systems to effectively mimic the ECM [88–90].

Nanofibrous structures present several advantages, such as high specific surface area for cell
attachment, higher microporous structure and a 3D micro environment for cell–cell and cell–biomaterial
contact, these being associated with unique physical and mechanical properties. These structures
when compared with commercial surgical meshes possess higher porosity and smaller pore size.
These properties make nanofiber systems suitable for biomaterials used in wound care, drug delivery,
and scaffolds for tissue regeneration [20,44,91].

Scaffolds for tissue engineering must possess a porous structure able to facilitate cell migration,
a balance between surface hydrophilicity and hydrophobicity for cell attachment, mechanical
properties comparable to natural tissue, and biocompatibility. Studies have shown that the
abovementioned characteristics are also highly influenced by average diameter of the fibers and
pore size. Effective cell attachment and proliferation has been observed in fiber systems with average
diameters smaller than 1 µm and average pore size of 14 µm [92]. In commercially available meshes,
even when it has been shown that cells are able to proliferate in micrometer/macrometer regimes,
the cells in fact have difficulty attaching and proliferating. Cells are seen around the fibers whereas,
on nanofiber based meshes, the cells attach to the fibers and quickly proliferate while making strong
contact with underlying nanofibers, therefore promoting interlayer growth.

The application of nanofiber systems has been hampered due to its poor mechanical properties
and nanofiber availability. Most of the available studies have focused on nanofibers prepared through
solution processes. The properties of the developed fibers can be controlled by different parameters
such as utilized solvent, concentration of polymer, processing methods, and ambient conditions.
For example, in the case of nanofibers made of polypropylene (one of the highly used polymers for
commercially available surgical meshes), decahydronaphthalene (decalin) and cyclohexane have been
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used as preferred solvents. Polypropylene nanofibers prepared with cyclohexane exhibited a rougher
surface when compared to the fibers prepared with decalin, suggesting that the surface morphology
of the nanofibers depend on the boiling point of each solvent [93]. When stress–strain behaviors
of the nanofibers are investigated, a tensile strength of 61.4 ± 1.5 MPa with 35.2% ± 1.7% of strain,
and a Young modulus of 174.6 ± 1.7 MPa was obtained for the decalin based nanofibers, whilst the
cyclohexane nanofibers exhibit a tensile strength of 18.2 ± 1.1 MPa with 46.7% ± 1.2% of elongation
and a Young modulus of 39.1 ± 1.4 MPa [94]. The abovementioned results were obtained from bundles
of nanofibers rather than individual fibers, these properties are strongly dependent on fiber orientation
within the tested sample, bonding between fibers, and slip of one fiber over another [94].

Regarding nanofiber availability, there are several methods to prepare nanofiber systems.
These methods include wet chemistry, Electrospinning (ES) [95] and Forcespinning® (FS) [96]
techniques. Most of the available literature has used ES processes; these studies have proven the
potential of these nanofiber systems towards solving many of the challenges encountered in TE.
ES processes have been limited to laboratory-based research given the challenges associated with
increasing yield and opportunity to work with melt based systems. FS, a technique that has been
recently introduced is based on developing nanofibers through the application of centrifugal forces.
The method has been proven effective to produce yields that could satisfy industry requirements
(i.e., several hundred meters per minute) as well as to produce nanofibers from melt based systems
therefore removing the requirement of a solvent and subsequently the potential contamination of
the materials with toxic organic solvents, and cost associated with the solvent itself and solvent
recovery procedures. Other scaffolds had been produced by 3D printing procedures. Such biomimetic
scaffolds are promising techniques as they could allow precise control over the geometry and
microstructure [46,97].

Table 7 presents a summary of recently published work regarding the manufacture of nanofiber
based surgical meshes.

Table 7. Nanofiber based surgical meshes.

Nanofiber Material Manufacturing
Process Diameter (nm)

Tensile
Strength

(MPa)
Advantages and Disadvantages Reference

Poly-"-caprolactone
(PCL) Electrospinning 1280 ± 330 3.11 ± 1.09

Better adhesion, growth, metabolic activity,
proliferation and viability of 3T3
Fibroblasts. Lack of in vivo testing.

[87,98]

Polydioxanone (PDO) Electrospinning 860 ± 420 3.76 ± 0.49
Bioresorbable polymer. Reduction of
long-term foreign body response (LTFBR).
No fulfill the mechanical requirements.

[99]
Polylactide-Co-Glycolide

(PLGA 8218) Electrospinning 3280 ± 570 6.47 ± 0.41

Exceed the minimum mechanical
requirements for hernia repair applications.
Bioresorbable polymer. Reduction of
LTFBR. Lack of in vivo testing.

PLLA Electrospinning 1480 ± 670 3.59 ± 0.25
In vivo advantages. Exceed the minimum
mechanical requirements for hernia repair
applications. Lack of in vivo testing.

Polyurethane (PU) Electrospinning 890 ± 330 18.9 ± 5.9 Elastic deformation.

PET Electrospinning 710 ± 280 3.17 ± 0.23
Adequate mechanical attributes.
No evidence of intestinal adhesions.
Trigger of a large foreign body reaction. [100]

PET/Chitosan Electrospinning 3010 ± 720 2.89 ± 0.27
Adequate mechanical attributes.
No evidence of intestinal adhesions.
Trigger of a large foreign body reaction.

PCL/Collagen Electrospinning 1000 2.13 ± 0.36
Biological and biomechanical stable,
support skeletal muscle cell ingrowth and
neo-tissue formation

[101]

PCL: Poly-"-caprolactone. PDO: Polydioxanone. PLGA 8218: Polylactide-Co-Glycolide. PU: Polyurethane. PET:
Polyethylene terephthalate.
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Nanofiber systems are certainly showing a strong potential to be used in the next generation of
surgical meshes, the increased availability (FS process) will certainly promote the development of
practical applications. Nanofiber developed through the FS system have shown promising results
regarding adhesion, growth, metabolic activity, proliferation, and viability of 3T3 cells [70,102]. It is
expected that these systems will be used in combination with existent commercial meshes to satisfy
other requirements such as mechanical strength needed to bear the intra-abdominal pressure exerted by
human body and implantation requirements to mention some. Future studies in this area will include
the effect of nanofiber morphology, mesh design (i.e., uniaxial aligned, radially aligned, orthogonally
patterned) needed to improve structural properties, and in vivo testing.

In summary, this review synergistically complements recent reviews made in this important area.
Table 8 presents a comparative table with recent published reviews [38,103–106]. Besides having
in common the history and present scenario, this review also presents information regarding
manufacturing methods (manufacturing of these meshes has a strong influence in the medical results,
therefore the ultimate functionality will be strongly dependent upon the manufacturing method) and
future perspectives.
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Table 8. Aspects related to hernia meshes compared in recently published reviews.

Baylon et al.
(This Review) Brown et al. [38] Sanbhal et al. [103] Guillaume et al. [104] Todros et al. [105] Todros et al. [106]

Introduction
p p p p p p

History
p p

- - - -

Present Scenario
p p p p p p

Properties Discussed

Elasticity/tensile
strength
Pore Size

Weight (density)
Constitution

Material absorption

Tensile strength
Pore Size Weight

Reactivity/Biocompatibility
Elasticity

Constitution
Shrinkage

Complications

Weight
Pore Shape, size/porosity
Mesh elasticity/strength

Properties discussed for particular
meshes, varies from the type of mesh

being discussed.

Pore size
Density

thickness

Biomechanical properties
Uniaxial tensile testing
Biaxial tensile testing

Ball burst testing

Surgical Mesh
p p p p p p

Manufacturing
Processes

> 2 processes
considered - - - - -

Future Perspectives 2 perspectives
considered -

p p
- -

Comments

Comparison of
meshes divided by
generations: First

generation
(18 meshes), second

generation,
(10 meshes), third

generation (7 meshes)

Comparison of meshes
divided by constitution,

Multi (3 meshes),
multifilament and

monofilament (13 meshes),
and foil (1 mesh).

Biomaterial meshes
(10 meshes)

Comparison between
synthetic meshes (15
meshes) Comparison
between composite
meshes (12 meshes)

Meshes divided by Biologically
Derived Matrices, Biodegradable

synthetic structures,
Anti-inflammatory mesh, Meshes
with enhanced cytocompatibility,

Anti-adhesive Mesh, Antibacterial
meshes. Review also discusses mesh

fixation, self-expanding systems,
post-implantation visible mesh, cell
coated meshes, and growth factor

loaded meshes.

Comparison between
synthetic surgical
meshes: HWPP

(5 meshes), LWPP
(6 meshes), PET
(1 mesh), ePTFE
(1 mesh), PVDF

(1 mesh)
Comparison between
Multilayered meshes

(10 meshes)

Comparison between synthetic
surgical meshes: HWPP (5 meshes),

LWPP (3 meshes), PET (1 mesh),
ePTFE (1 mesh), PVDF (1 mesh).

Comparison between Multilayered
Meshes (10 meshes)

Total meshes
compared 35 27 27 - 24 21
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5. Conclusions

Surgical meshes have become the system of choice for hernia repair. Even though it is not the
optimum method, so far it is the one that has shown a lower rate of recurrence. Currently, there are
more than 70 types of meshes commercially available. These are constructed from synthetic materials
(absorbable, non-absorbable, or a combination of both) and animal tissue. Despite reducing rates of
recurrence, hernia repair with surgical meshes still faces adverse effects such as infection, adhesion,
and bowel obstruction. Most of these drawbacks are related to the chemical and structural nature of
the mesh itself.

An optimum integration with the abdominal wall and negligible adhesion on the visceral side
are the most important after sought features for the “ideal” mesh. A surgical mesh will trigger one
of three different responses from the body: it may be integrated, encapsulated or degraded. In order
to have a minimal inflammatory response to better integrate it to the body, it is highly important to
improve biocompatibility.

To overcome this obstacle, researchers are actively exploring methods to improve biocompatibility,
with the goal of developing a mesh that can be effectively incorporated with minimal inflammation
and/or infection. Nanofibers have been recently considered as a strong potential intermediary structure
to be used as a coating, given their ultralightweight quality, which could contribute to minimize the
inflammatory response from the body and given its functional porosity, which could promote cell
adhesion and proliferation.
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